Journal of the American Society of Nephrology

Feed Category: 

Differentiation of a Contractile, Ureter-Like Tissue, from Embryonic Stem Cell-Derived Ureteric Bud and Ex Fetu Mesenchyme

Background
There is intense interest in replacing kidneys from stem cells. It is now possible to produce, from embryonic or induced pluripotent stem cells, kidney organoids that represent immature kidneys and display some physiologic functions. However, current techniques have not yet resulted in renal tissue with a ureter, which would be needed for engineered kidneys to be clinically useful.

Methods
We used a published sequence of growth factors and drugs to induce mouse embryonic stem cells to differentiate into ureteric bud tissue. We characterized isolated engineered ureteric buds differentiated from embryonic stem cells in three-dimensional culture and grafted them into ex fetu mouse kidney rudiments.

Results
Engineered ureteric buds branched in three-dimensional culture and expressed Hoxb7, a transcription factor that is part of a developmental regulatory system and a ureteric bud marker. When grafted into the cortex of ex fetu kidney rudiments, engineered ureteric buds branched and induced nephron formation; when grafted into peri-Wolffian mesenchyme, still attached to a kidney rudiment or in isolation, they did not branch but instead differentiated into multilayer ureter-like epithelia displaying robust expression of the urothelial marker uroplakin. This engineered ureteric bud tissue also organized the mesenchyme into smooth muscle that spontaneously contracted, with a period a little slower than that of natural ureteric peristalsis.

Conclusions
Mouse embryonic stem cells can be differentiated into ureteric bud cells. Grafting those UB-like structures into peri-Wolffian mesenchyme of cultured kidney rudiments can induce production of urothelium and organize the mesenchyme to produce rhythmically contracting smooth muscle layers. This development may represent a significant step toward the goal of renal regeneration.

Feed Item Url: 
http://jasn.asnjournals.org/cgi/content/short/31/10/2253?rss=1

Extracorporeal Treatment for Chloroquine, Hydroxychloroquine, and Quinine Poisoning: Systematic Review and Recommendations from the EXTRIP Workgroup

Background
Although chloroquine, hydroxychloroquine, and quinine are used for a range of medical conditions, recent research suggested a potential role in treating COVID-19. The resultant increase in prescribing was accompanied by an increase in adverse events, including severe toxicity and death. The Extracorporeal Treatments in Poisoning (EXTRIP) workgroup sought to determine the effect of and indications for extracorporeal treatments in cases of poisoning with these drugs.

Methods
We conducted systematic reviews of the literature, screened studies, extracted data, and summarized findings following published EXTRIP methods.

Results
A total of 44 studies (three in vitro studies, two animal studies, 28 patient reports or patient series, and 11 pharmacokinetic studies) met inclusion criteria regarding the effect of extracorporeal treatments. Toxicokinetic or pharmacokinetic analysis was available for 61 patients (13 chloroquine, three hydroxychloroquine, and 45 quinine). Clinical data were available for analysis from 38 patients, including 12 with chloroquine toxicity, one with hydroxychloroquine toxicity, and 25 with quinine toxicity. All three drugs were classified as non-dialyzable (not amenable to clinically significant removal by extracorporeal treatments). The available data do not support using extracorporeal treatments in addition to standard care for patients severely poisoned with either chloroquine or quinine (strong recommendation, very low quality of evidence). Although hydroxychloroquine was assessed as being non-dialyzable, the clinical evidence was not sufficient to support a formal recommendation regarding the use of extracorporeal treatments for this drug.

Conclusions
On the basis of our systematic review and analysis, the EXTRIP workgroup recommends against using extracorporeal methods to enhance elimination of these drugs in patients with severe chloroquine or quinine poisoning.

Feed Item Url: 
http://jasn.asnjournals.org/cgi/content/short/31/10/2475?rss=1

Lipocalin-2 Exacerbates Lupus Nephritis by Promoting Th1 Cell Differentiation

Background
Lipocalin-2 (LCN2) is an indicator of the severity of lupus nephritis (LN) and plays a pivotal role in immune responses, but it is not known if its effect on LN pathogenesis derives from regulating the immune imbalance of T lymphocyte subsets.

Methods
The expression of LCN2 in T cells and kidneys was assessed in renal biopsies from patients with LN. We investigated the relationship between LCN2 levels and development of LN and systemic illness by injecting anti-LCN2 antibodies into MRL/lpr mice and analyzing pristane-treated LCN2–/– mice.

Results
LCN2 is highly expressed in CD4+ T cells and in renal tissues, and is associated with severe renal damage in patients with LN and in mice with experimental lupus. LCN2 promotes IFN- overexpression in CD4+ T cells through the IL-12/STAT4 pathway in an autocrine or paracrine manner. Both neutralization of LCN2 in MRL/lpr mice and genetic depletion of LCN2 in pristane-induced lupus mice greatly ameliorate nephritis. The frequency and number of splenic and renal Th1 cells decrease in proportion to LN disease activity. Conversely, administration of LCN2 exacerbates the disease with significantly higher renal activity scores and increased numbers of Th1 cells.

Conclusions
LCN2 plays a crucial role in Th1 cell differentiation, and may present a potential therapeutic target for LN.

Feed Item Url: 
http://jasn.asnjournals.org/cgi/content/short/31/10/2263?rss=1

Single-Cell RNA Sequencing Reveals mRNA Splice Isoform Switching during Kidney Development

Background
During mammalian kidney development, nephron progenitors undergo a mesenchymal-to-epithelial transition and eventually differentiate into the various tubular segments of the nephron. Recently, Drop-seq single-cell RNA sequencing technology for measuring gene expression from thousands of individual cells identified the different cell types in the developing kidney. However, that analysis did not include the additional layer of heterogeneity that alternative mRNA splicing creates.

Methods
Full transcript length single-cell RNA sequencing characterized the transcriptomes of 544 individual cells from mouse embryonic kidneys.

Results
Gene expression levels measured with full transcript length single-cell RNA sequencing identified each cell type. Further analysis comprehensively characterized splice isoform switching during the transition between mesenchymal and epithelial cellular states, which is a key transitional process in kidney development. The study also identified several putative splicing regulators, including the genes Esrp1/2 and Rbfox1/2.

Conclusions
Discovery of the sets of genes that are alternatively spliced as the fetal kidney mesenchyme differentiates into tubular epithelium will improve our understanding of the molecular mechanisms that drive kidney development.

Feed Item Url: 
http://jasn.asnjournals.org/cgi/content/short/31/10/2278?rss=1

Multifunctional Natural Polymer Nanoparticles as Antifibrotic Gene Carriers for CKD Therapy

Background
Progressive fibrosis is the underlying pathophysiological process of CKD, and targeted prevention or reversal of the profibrotic cell phenotype is an important goal in developing therapeutics for CKD. Nanoparticles offer new ways to deliver antifibrotic therapies to damaged tissues and resident cells to limit manifestation of the profibrotic phenotype.

Methods
We focused on delivering plasmid DNA expressing bone morphogenetic protein 7 (BMP7) or hepatocyte growth factor (HGF)–NK1 (HGF/NK1) by encapsulation within chitosan nanoparticles coated with hyaluronan, to safely administer multifunctional nanoparticles containing the plasmid DNA to the kidneys for localized and sustained expression of antifibrotic factors. We characterized and evaluated nanoparticles in vitro for biocompatibility and antifibrotic function. To assess antifibrotic activity in vivo, we used noninvasive delivery to unilateral ureteral obstruction mouse models of CKD.

Results
Synthesis of hyaluronan-coated chitosan nanoparticles containing plasmid DNA expressing either BMP7 or NGF/NKI resulted in consistently sized nanoparticles, which—following endocytosis driven by CD44+ cells—promoted cellular growth and inhibited fibrotic gene expression in vitro. Intravenous tail injection of these nanoparticles resulted in approximately 40%–45% of gene uptake in kidneys in vivo. The nanoparticles attenuated the development of fibrosis and rescued renal function in unilateral ureteral obstruction mouse models of CKD. Gene delivery of BMP7 reversed the progression of fibrosis and regenerated tubules, whereas delivery of HGF/NK1 halted CKD progression by eliminating collagen fiber deposition.

Conclusions
Nanoparticle delivery of HGF/NK1 conveyed potent antifibrotic and proregenerative effects. Overall, this research provided the proof of concept on which to base future investigations for enhanced targeting and transfection of therapeutic genes to kidney tissues, and an avenue toward treatment of CKD.

Feed Item Url: 
http://jasn.asnjournals.org/cgi/content/short/31/10/2292?rss=1

Authors Reply

Feed Item Url: 
http://jasn.asnjournals.org/cgi/content/short/31/10/2492-a?rss=1

Sympathetic Overactivity in CKD Disrupts Buffering of Neurotransmission by Endothelium-Derived Hyperpolarizing Factor and Enhances Vasoconstriction

Background
Hypertension commonly complicates CKD. Vascular smooth muscle cells (VSMCs) of resistance arteries receive signals from the sympathetic nervous system that induce an endothelial cell (EC)–dependent anticontractile response that moderates vasoconstriction. However, the specific role of this pathway in the enhanced vasoconstriction in CKD is unknown.

Methods
A mouse model of CKD hypertension generated with 5/6-nephrectomy (5/6Nx) was used to investigate the hypothesis that an impaired anticontractile mechanism enhances sympathetic vasoconstriction. In vivo, ex vivo (isolated mesenteric resistance arteries), and in vitro (VSMC and EC coculture) models demonstrated neurovascular transmission and its contribution to vascular resistance.

Results
By 4 weeks, 5/6Nx mice (versus sham) had augmented increases in mesenteric vascular resistance and mean arterial pressure with carotid artery occlusion, accompanied by decreased connexin 43 (Cx43) expression at myoendothelial junctions (MEJs), impaired gap junction function, decreased EC-dependent hyperpolarization (EDH), and enhanced contractions. Exposure of VSMCs to NE for 24 hours in a vascular cell coculture decreased MEJ Cx43 expression and MEJ gap junction function. These changes preceded vascular structural changes evident only at week 8. Inhibition of central sympathetic outflow or transfection of Cx43 normalized neurovascular transmission and vasoconstriction in 5/6Nx mice.

Conclusions
5/6Nx mice have enhanced neurovascular transmission and vasoconstriction from an impaired EDH anticontractile component before vascular structural changes. These neurovascular changes depend on an enhanced sympathetic discharge that impairs the expression of Cx43 in gap junctions at MEJs, thereby interrupting EDH responses that normally moderate vascular tone. Dysregulation of neurovascular transmission may contribute to the development of hypertension in CKD.

Feed Item Url: 
http://jasn.asnjournals.org/cgi/content/short/31/10/2312?rss=1

Correction

Feed Item Url: 
http://jasn.asnjournals.org/cgi/content/short/31/10/2494?rss=1

Pages